Adapted TextRank for Term Extraction: A Generic Method of Improving Automatic Term Extraction Algorithms

Ziqi Zhang¹, Johann Petrak², Diana Maynard²
ziqi.zhang@sheffield.ac.uk, johann.petrak@sheffield.ac.uk, d.maynard@sheffield.ac.uk

1. Information School, The University of Sheffield, UK
2. Department of Computer Science, The University of Sheffield, UK
The Task of ATE

- **Input:** (reasonably large) domain specific, focused corpus
- **Output:** list terms from the corpus, representing the domain
- **Approach**
 - Candidate extraction: domain-dependent, usually noun phrases, n-grams, or sequence matched by PoS patterns
 - **Candidate ranking & selection:** scoring candidates based on corpus statistics, selection by threshold, or machine learning

Domain specific corpus

ATE

- Candidate Extraction
- Candidate Ranking, Selection

Terms for the corpus

[semantic, 0.67, ontology, 0.34, nlp, 0.33, text mining, 0.12, ... web page, 0.012]
The Task of ATE

- **A classic text mining problem**
 - Dating back to 1990s (Bourigault 1992)
 - To date still an active area of research

- **A fundamental step to many complex tasks**
 - Ontology engineering
 - Dictionary, terminology construction
 - Information Retrieval
 - Translation
 - ...

- **Context of this work: KNOWMAK** (https://www.knowmak.eu/)
The Task of ATE

Differentiation from related tasks

<table>
<thead>
<tr>
<th>Keyword Extraction</th>
<th>ATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>- document specific</td>
<td>- domain specific</td>
</tr>
<tr>
<td>- only a handful</td>
<td>- # depends on corpus</td>
</tr>
<tr>
<td>- mainly for indexing</td>
<td>- mainly knowledge acquisition</td>
</tr>
</tbody>
</table>

NER	
- usually real world named entities	- domain specific terms
- sentence context is more important	- corpus level statistics are more important
- semantic typing	- no typing

Source: https://imanage.com/blog/named-entity-recognition-ravn-part-1/
Motivation and Contribution

● ATE still an unsolved problem
 ■ No ‘all-rounder’ method
 ■ Performance always depends on data and domain
 ■ ‘one-size-fits-all’ solution feasible?

● ATE methods are predominantly unsupervised
 ■ For many domains there are already domain specific resources potentially useful, e.g., unlabelled corpus, pre-compiled named entity lists, partial ontologies, etc
 ■ Can we benefit from those?
Motivation and Contribution

- ATE still an unsolved problem
 - No ‘all-rounder’ method
 - Performance always depends on data and domain
 - ‘one-size-fits-all’ solution feasible?

- ATE methods are predominantly unsupervised
 - For many domains there are already domain specific resources potentially useful, e.g., unlabelled corpus, pre-compiled named entity lists, partial ontologies, etc
 - Can we benefit from those?

A generic method that employs semantic relatedness to a set of **domain specific seed words** to potentially **improve any ATE** algorithms (by up to 25 percentage points in average precision in experiments).
AdaText - Overview

Adapted TextRank for Automatic Term Extraction

- Domain specific seed words/phrases
- Semantic relatedness
- Domain specific corpus
- Extract words
- ATE (any algorithm)
- [$t_1 = 1.99$, $t_2 = 1.21$, $t_3 = 1.10$, ...]
- Filter by threshold
- [$w_1 = 0.67$, $w_2 = 0.34$, $w_3 = 0.22$, ...]
- TextRank
- Re-rank
- [$t_1 = 2.19$, $t_3 = 1.41$, $t_2 = 1.29$, ...]
Adapted TextRank for Automatic Term Extraction

SEEDING

Domain specific seed words/phrases → Extract words → Semantic relatedness → Filter by threshold

CORPUS LEVEL TEXTRANK

ATE (any algorithm) + Re-rank

Combining with ATE

\[
\begin{align*}
\text{TextRank: } & t_1 = 1.99, t_2 = 1.21, t_3 = 1.10, \ldots \\
\text{ATE: } & w_1 = 0.67, w_2 = 0.34, w_3 = 0.22, \ldots \\
\text{Re-rank: } & t_1 = 2.19, t_3 = 1.41, t_2 = 1.29, \ldots
\end{align*}
\]
AdaText - Seeding

Input
- C - the target corpus from which terms are extracted
- S - a set of ‘seed’ word/phrases representing the domain
 - taken from existing domain lexicons, or generated in an unsupervised way from available corpora
 - May not contain real terms from C

Process
- Extract words from C, as W
- Compute pairwise semantic relatedness for $S \times W$
 - Cosine similarity using GloVe embedding vectors
 - OOV ignored, phrase based on compositional averaging (Iyyer et al. 2015)

Output
- W_{sub} a subset of W, satisfying relatedness > min
 Intuitively, they are more ‘relevant’ to the domain
AdaText - Corpus Level TextRank

Input
- C - the target corpus from which terms are extracted
- W_{sub} - the subset of words selected before

Process
- Apply TextRank to the graph created for W_{sub} to compute a TextRank (tr) score of every word w in W_{sub}
- Traditional TextRank (Mihalcea et al., 2004) is a PageRank process to a graph of words from each document, where an edge is created if words co-occur in a context window of win
AdaText - Corpus Level TextRank

Input
- **C** - the target corpus from which terms are extracted
- **W_{sub}** - the subset of words selected before

Process
- Apply TextRank to the graph created for W_{sub} to compute a TextRank (tr) score of every word w in W_{sub}
- Here it is adapted in two ways
 - A graph of words from the entire corpus
 - An edge is created if two words appear within **win anywhere in the corpus** (in any document)

Output
- tr scores for every word w in W_{sub}
AdaText - Combining with ATE

Input
- C - the target corpus from which terms are extracted
- ATE - some ATE algorithm
- tr scores for every word w in W_{sub}

Process
- Apply ATE to C to extract and score candidate terms
- Revise each candidate term’s score using tr scores for its composing words

\[
\text{score}(t_i) = (1.0 + \frac{\sum_{w_i \in \text{words}(t_i)} tr(w_i)}{|\text{words}(t_i)|}) \times \text{ate}(t_i)
\]

- Then re-rank candidate terms by the new score

Output
- Re-ranked list of candidate terms
Experiment and Findings

- **Base ATE methods** (as AdaText needs ATE scores of candidate terms)
 - Modified TFIDF (Zhang et al., 2016)
 - CValue (Ananiadou 1994)
 - Basic (Bordea et al., 2013)
 - RAKE (Rose et al., 2010)
 - Weirdness (Ahmad et al., 1999)
 - LinkProbability (LP, Astrakhantsev, 2016)
 - X^2 (Matsuo et al., 2003)
 - GlossEx (Park et al., 2002)
 - Positive Unlabelled (PU) learning (Astrakhantsev, 2016)
 - AvgRel - average relatedness score with seeds

- Use implementations:
 - JATE (https://github.com/ziqizhang/jate)
 - ATR4S (https://github.com/isprats/atr4s)
Experiment and Findings

Evaluation measures
- Precision for top K ranked candidate terms
- $K = \{50, 100, 500, 1000, 2000\}$
- Average P@K for all five K’s
Datasets

- GENIA
 - 2,000 semantically annotated Medline abstracts
 - 434k words
 - 33k target terms

- ACLv2
 - 300 ACL paper abstracts
 - 32k words
 - 3k target terms
Experiment and Findings

Seeds and parameters

- For GENIA:
 5,502 named entities from the BioNLP Shared Task 2011, only 25 match candidate terms

- For ACLv2:
 1,301 noun phrases from the titles of ACL, NAACL, and EACL papers (since 2000), none matches candidate terms

- Semantic relatedness threshold $min=0.5$ to 0.85 with 0.05 increment (selects for GENIA/ACL ~ 50/70 % ... 10/5 %)

- TextRank context window $win=5, 10$
- Base ATE performance varies significantly depending on datasets.
- No single, consistently winning method on all five K’s.
- E.g., PU is the best performing in $\text{AvgP}@[K]$ on the ACL corpus, but the fourth worst performing on the GENIA corpus.
- The min threshold: too low (creating lots of isolated graphs) or too high (including too many weakly related words) can harm performance
- The win threshold: no strong pattern as to which (5 or 10) is better
- Within \(\text{min} = [0.6, 0.75] \), AvgP@K improvement by 1 ~ 25 percentage points depending on the base ATE, and dataset
Conclusion

● **The takeaway message**
 ■ There is probably never a ‘one-size-fit-all’ ATE method, instead, think about improving existing ones
 ■ AdaText makes use of existing domain resources and builds on the TextRank algorithm
 ■ Generic method able to improve, potentially, any ATE method

● **Future work**
 ■ Whether and how the size and source of the seed lexicon affects performance
 ■ Adapt TextRank to a graph of both words and phrases, and see how this affects results
Resources and Software

● **Data**
 ■ Genia corpus, ACL corpus available
 ■ Glove embeddings available

● **Software**
 ■ JATE (https://github.com/ziqizhang/jate)
 ■ ATR4S (https://github.com/ispras/atr4s)
 ■ Code for this work: https://github.com/ziqizhang/texpr

● **Slides**
 ■ https://goo.gl/1sPuhg
Acknowledgements

This work is supported by the European Union's Horizon 2020 research and innovation programme under grant agreement No. 726992 (KNOWMAK project)

https://www.knowmak.eu/