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Abstract

The Internet of Things (IoT) with billions of connected devices has been generating an enormous amount of data every hour.
Connecting every data item generated by IoT to the rest of the digital world to turn this data into meaningful actions will create
new capabilities, richer experiences, and unprecedented economic opportunity for businesses, individuals, and countries. However,
providing an integrated view for exploring and querying such data at real-time is extremely challenging due to its Big Data natures:
big volume, fast real-time update and messy data sources. To address this challenge we provide a unified integrated and live view
for heterogeneous IoT data sources using Linked Data, called the Graph Of Things (GoT). GoT is backed by a scalable and elastic
software stack to deal with billion records of historical and static datasets in conjunction with millions of triples being fetched and
enriched to connect the GoT per hour at realtime. The GoT makes approximately a half of million stream data sources queryable
via a SPARQL endpoint and a continuous query channel using the web socket protocol that enables us to create a live explorer of
GoT at http://graphofthings.org/ with just HTML and Javascript.
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1. Introduction

International Data Corporation (IDC) reports that the digital
universe has been grown by a factor of 300 from 2005 to 2020.
Specifically, IDC projects that by 2020 the digital universe will
reach 40 zettabytes (ZB), which is 40 trillion GB of data or
5,200 GB of data for every person on Earth [ﬂ The majority of
this data will be contributed by billions of devices connected to
the Internet of Things (IoT). Connecting every data items gen-
erated by IoT to the rest of the digital world to turn this data
into meaningful actions will create new capabilities, richer ex-
periences, and unprecedented economic opportunity for busi-
nesses, individuals, and countries. However, deriving trends,
patterns, outliers, and unanticipated relationships in such enor-
mous amount of dynamic data with unprecedented speed and
adaptability is extremely challenging.

Because as on the Web, access to and integration of in-
formation from large numbers of heterogeneous IoT stream-
ing sources under diverse ownership and control is a resource-
intensive and cumbersome task without proper support. Be-
sides, such distinct streaming data sources are generated from
distributed data acquisition infrastructures of Smart Cities, So-
cial network applications, medical sensors, etc. Hence, tradi-
tionally, to cross-correlate and analyze them into higher level
data products, they need to be transformed, cleaned and con-
solidated into a large static data warehouse and then made
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ready for certain types of rudimentary query patterns, e.g.,
OLAP queries. However, these streaming sources operates on
longer time scales on which a wide range of dynamic data
feeds are continuously arriving from disparate and uncontrolled
sources [9], thus, it is much more difficult to maintain a fresh
and consistent integrated view for unlimited discovery and ex-
ploration of enormous ever growing IoT data.

Motivated by such challenges and inspired by Knowledge
Vault [6], we aim to create a Live Knowledge Graph to pace
the way towards building a “realtime search engine for Inter-
net of Things”, called the Graph of Things(GoT). Similar to
the Knowledge Graph used in search engines like Google E] and
Bing E], deep understanding of the world around us, GoT aims
to enable deep understanding of data generated by connected
things of the world around us, called The Graph of Things
(GoT). To address aforementioned challenges, GoT is repre-
sented as Linked Stream Data [23]] which employs the Linked
Data model to provide a graph as the basic representation for
stream data together with static data. This graph enables a
smarter way to discover and explore [oT data under meaningful
facts and their relationships.

Along this line, the effective exploitation of Linked Stream
Data from multiple sources requires an infrastructure that sup-
ports the intense effort of enrichment, linking, and correla-
tion of data streams with very large static data collections, e.g,
LinkedGeoDateﬂ and DBpedizﬂ Moreover, at the same time,

2http://www,google,ie/insidesearch/features/search/knowledge.
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this infrastructure needs to support sophisticated queries, dis-
covery and exploration on increasingly complex data objects
representing realistic models of the world. Therefore, in this
article, we present a scalable and elastic solution for ingest-
ing, storing, exploring and querying billions of dynamic IoT
data points in conjunction with static data sets of Linked Data
Cloud. Our solution provides an integrated architecture to col-
lect and curate useful RDF-based facts from IoT raw data to
create a graph that plays the role as a unified and live view of
data objects about "Things”. This solution aims to provide a
comprehensive software stack with easy-to-use toolkits to fil-
ter, aggregate, enrich, and analyze a high throughput of data
from multiple disparate live data sources and in any data for-
mat to identify simple and complex patterns to visualize busi-
ness in real-time, detect urgent situations, and automate imme-
diate actions. For dealing with heterogeneity of dynamic data
sources, Linked Stream Middleware [[19] of this software stack
will transform the data in a variety of data formats and data
sources to make it ready to any further processing and high-
level analytical operations. Its parallel processing layer of the
stack will be able to elastically and dynamically distribute pro-
cessing load to the cluster as well as cope with a large amount
of queries and incoming streams as well in a huge volume of
data. Our back-end data management system supports the in-
gestion of million data points per second while it is still able to
query live data while being indexed to the persistent distributed
storage which stores billions-triple datasets of historical data as
well as static datasets.

The remainder of the article is structured as follows. The
Section [2] will present the process of building the Graph of
Things from both physical world and virtual world. In the next
section, we will share our design choice of building the system
and infrastructure to store and query the GoT. The Section [4]
will show some demonstrations of our live system and share
some lessons learnt during the course of 10 months of deploy-
ment. Finally, the Section[6] will conclude the article and reveal
our future plan for GoT.

2. Building The Live Knowledge Graph of Connected
Things

To motivate the creation of the Graph of Things, we starts
with a real-time search use case as follows. For example, John
has just missed the connection flight at the Dublin airport, he
has few hours to spare in the sunny weather. He intends to take
the bus to his favourite Sushi restaurant in the city centre, but
he finds out there is no bus today due to the current strike of
Dublin Bus. To avoid current traffic situations in the city cen-
tre, he searches for some other Sushi restaurants that can be
reached from the airport in 10 minutes by taxi. From the list
of recommended restaurants, he finds out that there is a Sushi
restaurant next to the Dublin Ferry Port where an old classmate
from Liverpool will be arriving 1 hour on a ferry. After finish-
ing the dinner, before coming back to the airport, he is notified
that his connecting flight will be delayed for 2 hours, and he
finds out there is open-air music show just few blocks from the
restaurant. From the live camera feed pointing to the show,

there is a big exciting crowd, then, he decides to take a walk to
there.

In order to provides such live connected information to the
user, we have to continuously fuse various [oT stream data
sources such as flights, ships, traffic cameras and weather sen-
sors into GoT as an integrated view. The GoT not only com-
prises some sensory data captured by sensors also involves
the context, the meanings, relationships between data objects.
In particular, the GoT is represented as a big connected RDF
graph which enables applications, users and developers to tra-
verse along graph edges (RDF triples) without the restriction of
the database schema and fixed connections among data items,
real world things. The search engine based on this graph can
benefit greatly from direct access to these nature relationships
to have real intrinsic view of real world events, phenomena.
Therefore, the graph can provides smarter search results which
lead to users’ curiosity on new relevant topics. In above use
case, returned data entries to users like flights, Sushi restau-
rants and events of interests are graph nodes which are con-
nected to other nodes as potentially data of interest for the users.
For instance, the restaurant and the music show events while
the ferry has spatial relationships which trigger the interesting
correlations according to to the users’s contexts. Such correla-
tions can be queried by using an extension of SPARQL 1.1 with
spatial and temporal filtering conditions for expressing spatial-
temporal context of a query. While we defers the technical de-
tails expressing and processing such queries, we will present
how we model and integrate our IoT data sources summarised
in Table|l|in following subsections.

2.1. Collecting facts of Physical Things

For the physical things equipped with sensors to “observe”
facts about them, we use SSN Ontology [5] to capture the sens-
ing context including sensor configurations, meaning of what
to measure. To have a richer context, we correlate several data
sets from Linked Data Cloud to create meaningful links to the
sensors, properties, features of interest it measures. These links
play the pivotal roles for correlating stream data generated by
it, for instance, finding the flights departing from a same city
is currently in the same airspace of a country. In fact, we ex-
tract relevant spatial data from LinkedGeoData, and Geonames
dataset and other relevant known concepts or entities from DB-
pedia (which are intergrated in YAGO [10]). For instance, users
can start with a string ”weather in Dublin”, the matched labels
of weather sensors in Dublin and DBpedia entries of Dublin
city, Ireland will trigger the smart data discovery process with-
out being buried in tons of ambiguous results. Such contextual
data of each sensor is added to the GoT as a subgraph.

An example illustrated in Figure [T]is sensor metadata of a
weather station that observes the temperature and humidity at
Dublin Airport. It captures the context in which the sensor read-
ings are obtained to generate the dynamic, graph-based stream
data from the time-varying sensor readings. These readings
have links to their meanings, e.g. :tempValue (18 Celsius) is
the temperature of Dublin Airport at “21:32:52, 09/08/2011".
Each readings plays the role as a stream subgraph attached to



the GoT when the sensor reading is fed into GoT from the orig-
inal sensor source.
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Figure 1: A stream subgraph based on SSN ontotology

Table[T]lists the dominated sensor data sources in our catalog.
The “’sensing objects” columns present the number of physical
objects (places, aircrafts, ships, etc ) that the sensing sources
observes. These sensing data sources are fetched to GoT in dif-
ferent update rates corresponding to their nature of value, fre-
quent of updates and the distribution of data sources. We has
been archiving all fetched data since June, 2014. Among them,
The NOAA’s Climatic Data Centelﬂ (NCDC) provides 100
years of meteorological data sources from 20,000 weather sta-
tionsﬂ However, we decide to limit the queryable archived win-
dow back to 1971 due to storage and processing capability of
our cluster. Addition to NOAA, LSM sensor data sources [[19]
offers weather data of 60,000 places around the worlds via
Web-based APIs from Web-based weather providers. For air-
crafts and ships, they both use transponders to identify them by
broadcasting or exchanging their information (identities, coor-
dinates, speed, etc) with radars or other receivers. Such radars
or receivers then relay received information to a gateway on
which we subscribe or fetch data from. We also built a spider
to scrap webpages that provide live camera feeds. As a result,
we currently have 45,000 camera feeds, however, due to the
size of data and legal issues, we only provide live feeds and
do not archive any data. On top of that, thanks for government
open and public data projects, we have several small set of data
sources that cover small areas (a city or a country). For exam-
ple, several smart cities projects such as Dublin, London and
New York publish a wide range of sensor data sources such as
train, bike and bus information.

2.2. Expand the knowledge graph to Social Things

Similar to Citizen Sensing [27, 132] and Social Sensing [25,
2], we consider social media such as Twitter, Facebook, RSS
feeds as “Social Things” which “sense” events, information

6http://Www.ncdc.noaa. gov/
7http ://www.ncdc.noaa.gov/data-access/quick-links

Sources | Sensing objects | Updates/hour | Archived window
NOAA 21k 21k since 1/1971
LSM 60k 28k since 6/2014
Camera 45k live since 8/2014
Flight 317k 81.6k since 8/2014
Ship 20k 240k since 2/2015
Twitter - 67k since 8/2014
Others 5,4k 12k since 8/2014

Table 1: IoT stream data sources of The Graph of Things

from Web citizens. Therefore, we extend the SSN ontology
[5] to model a social media extractor as a Sensor. Instead of
extracting only the Tweet text, we use natural language tools
to extract named entities and then enrich them with meaningful
concepts and relationships as RDF triples. The Figure 2] illus-
trates a snapshot of Tweet data that is extracted as RDF-based
triples. In this diagram, the extracted RDF subgraph is driven
SSN ontology, NERD ontologyﬁ and also spatial context in the
Tweets.
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Figure 2: A social sensor reading snapshots of Tweet stream

Currently, we choose Twitter for social network streams,
and popular RSS news channels, such as BBC, CNN, Yahoo!
News for RSS feed streams. To provide useful relationships

8http://nerd.eurecom.fr/ontology



to Physical Things, we prioritise the semantic facts relevance to
RDF entities generated from connected things, such as location-
based information, events, traffic situations. In particular, for
Twitter streams, the system crawls Tweets related to physical
sensors in our database judging by their locations and other rel-
evant metadata. However, there are only roughly 4% of tweets
that explicitly have geo-tags (longtitude and latitude values). To
increase this rate, we use the enriching processing in Figure 3]
by using natural language processing techniques on the text of
the Tweets. Firstly, raw tweets can be crawled and stored as
json files by using TwitterAPIﬂ Next, raw text of tweets are
tagged with entities of interest by popular natural language pro-
cessing toolkits such as StanfordNERET] [15] and IllinoisNERE]
[30]. These toolkits recognise named entities with three types
(including person, location, and organization) from plain text
of social media messages, such as Twitter, Facebook, or RSS
Feeds [8]]. The tagged entities are selected as candidate ones to
go through the next step by its frequency of appearance in the
crawled Tweets in the recent window of times, e.g, 1 hours. The
tagged entities will then be verified by querying YAGO ontol-
ogy to determine whether they appear in the ontology or not. If
we find matched items in YAGO for an tagged entity, we then
extracts relevant geographical information as well as other meta
data, e.g relevant Wikipedia entries from the YAGO ontology.

Raw tweets
(json files)

Crawler
witterAPI

Extract tweet/status
(text)

:

Entity Tagging
(StanfordNER)

Tagged

Entities

YAGO Ontology
(GeoNames, Wikipedia,
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Verify

Verified

Entities

GoT Ontology
(SSN, AWS,
FOAF, NERD, LODE)

Generate

graph of things Graph of social things

Figure 3: Subgraph Extracting Process of Social Things

Similar to Tweet processing, RSS feeds are also anno-
tated by language processing toolkits to connect to YAGO
ontology. However, RSS feeds do not include the lo-
cation data. The mentioned locations of RSS feeds
are only extracted by linking with GeoNames entities in

9https://dcv.twitter.com/overview/api
10http ://nlp.stanford.edu/software/CRF-NER.shtml
http://cogcomp.cs.illinois.edu/page/run_demo/NER

YAGO. These linked entities will have spatial proper-
ties like “http://www.w3.0rg/2003/01/geo/wgs84_pos#lat” and
“http://www.w3.0rg/2003/01/geo/wgs84 _pos#long”.

3. System Design

From the description of the Graph of Things above, this sec-
tion will design the scalable and elastic architecture, storage
and infrastructure that enable users/developers to continuously
add and query IoT data at near-realtime.

3.1. Architecture

To design the data management system for GoT, we decouple
the data processing flow by following the the layered architec-
ture of our Linked Stream Middleware(LSM) [20] as shown in
Figure 4] The data consumption is handled in the Data Acqui-
sition Layer which provides a wide range of plug-in wrappers.
These wrappers transform and curate stream data from variety
of formats, protocols and device platforms to link streaming
triples to the Graph of Things layer (GoT layer). The GoT layer
stores and indexes RDF-based data in distributed persistent par-
titions together with distributed in-memory storages of the pro-
cessing cluster as presented in Section [3.2] The GoT layer
provides data access interfaces for two query processing en-
gines, i.e., SPARQL engine and CQELS engine [17, 22], to en-
able the application developers to query data via SPARQL end-
point or Stream Subscribing Chanel in the Application layer.
While SPARQL Endpoint serves one-shot queries using an ex-
tension of SPARQL 1.1 query language with spatial, temporal
and free text built-in functions via a customised SPARQL En-
gine, Stream Subscribing Chanel serves continuous queries us-
ing CQELS-QL query language [16] via websocket. CQELS
Engine is a stream processing engine which supports contin-
uous queries over RDF stream data. A continuous query is a
long standing query which is continuously triggered when the
new relevant data arrives. Therefore, via the websocket proto-
col, once a user subscribes a CQELS-QL, a stream of output
will be fed back to the subscriber.

In the Data Acquisition layer, the data is fetched or pushed
into the system via several protocols such as HTTP, FTP,
TCP/IP, web sockets, MQTT and then is processed asyn-
chronously in different processes on distributed processing
nodes. These processes are grouped in a type of wrappers, e.g,
wrapper for collecting data from xml-based weather service, or
RDF-based wrapper for extracting Tweet streams. As the pro-
cessing load of each wrapper type is quite different, some of
them can run in a single machine but others have to be dis-
tributed across different machines. Whether the data sources
are fetched in push-based or pull-based fashion, the output of
the processing wrapper is pushed in the stream fashion to the
shared bus in RDF format, called, the Stream Graph Data Bus.
The stream data in this bus is serialised in RDF-Turtle or JSON-
LD to be ingested to the next step.

The processes of feeding data to the Stream Graph Data
Bus need to be fault-tolerant as the connection to external data
sources are unstable, the data processing wrappers are error-
prone. Moreover, the incoming stream throughput is fluctuated
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Figure 4: Layered Architecture

and busty, thus, the architecture of our data management has
to be able to serve a wide range of workloads with very low-
latency of reads and updates. Due to this requirement of robust-
ness, we realise the Lamda Architecture [26] as the processing
flow showed in Figure[3]

All data entering the system is dispatched to both the batch
layer and the online layer for processing. The batch layer is re-
sponsible for storing the master historical RDF streams (an im-
mutable, append-only converted RDF triples) which are used to
pre-compute the batch views specified by RDF Data Cube Vo-
cabularyEl Then, in the serving layer these precomputed views
are materialised and indexed to store in HBase [?] and Elastic-
Search E so that they can be queried in low-latency, ad-hoc
way. The online layer handled by Storm compensates for the
high latency of updates to the serving layer and deals with re-
cent data only. Any incoming query can be answered by merg-
ing results from batch views and real-time views using CQELS
Cloud Engine [22] which coordinates HBase, ElasticSearch and
Hadoop E| and Stormmto handle the SPARQL and CQELS as
mentioned in above Section. The architecture aims to be lin-
early scalable, and it should scale out rather than up, meaning
that elasticity is handled by the number of machines added to
the system.

3.2. Query-aware Hybrid Storage

The Graph of Things is exposed to the user as a single graph,
however native triple stores like Virtuoso, Jena TDB could not
scale to its number of RDF Triples and speed of updates [20].
According to research shown in [[L1} 24], the processing in

2http://www.w3.org/TR/vocab-data-cube/
Bhttp://hbase.apache.org/
Yhttps://www.elastic.co/products/elasticsearch
Shttps://hadoop.apache.org/
https://storm.apache.org/
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Figure 5: Lambda architecture for GoT data ingestion, publishing and querying

Big RDF Graph could be parallelised efficiently by partition-
ing the graph into smaller subgraphs to store in multiple pro-
cessing nodes. Moreover, in designing physical storage to store
RDF triples, property tables could reduce subject-subject self-
joins of the triples table. They are very good at speeding up
queries that can be answered from a single property table, most
queries require joins or unions to combine data from several
tables [1]]. However, using property tables introduces complex-
ity by requiring property clustering to be carefully done to cre-
ate property tables that are not too wide, while still being wide
enough to answer most queries directly. Moreover, ubiquitous
multi-valued attributes cause further complexity. Being aware
of such advantage and drawbacks of property tables, we design
the storage of subgraphs similar property tables by grouping
properties by frequent query patterns and distribution of graph
patterns, called Query-aware Hybrid Storage.

The sensor readings fed into the GoT have both spatial and
temporal context and most of the queries on them contain spa-
tial and temporal patterns. Therefore, we partition the GoT
graph based on RDF predicates that imply the spatial and tem-
poral context. We choose Hbase and ElasticSearch as underly-
ing storage for such partitioned subgraphs. Their table struc-
tures has flexible data structure which enables us to store sub-
graphs which share a similar graph shape. This also solve the
aforementioned issue of multi-valued properties that is prob-
lematic for both traditional property tables and relational tables.
Such table structures can store a flexible number of attributes in
the same table without having to use list, set, or bag attributes.
Moreover, Hbase and ElasticSearch provide spatial and tem-
poral indexing schema that lead to two types indexing mecha-
nisms introduced in following subsections. Other triple patterns
that are not able to indexed in these types will be stored in native
triple storage. We currently use JenaTDB to store such generic
subgraph like static data as they are less than 100 million triples
which can be easily loaded into RAM of a standalone worksta-
tion for the sake of boosting performance. We envisage that a
distributed solution like [11], 24]] will be needed in the future
when the static part of GoT grows.

The incoming data from Stream Graph Data Bus is routed
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to destined storages via the data routing flow illustrated in Fig-
ure[] The fetching operations are built as asynchronous tasks,
scheduled in the fetching cluster. The GoT engine then evalu-
ates the triple received and buffers the data streams for further
processing. Data is routed to Triple Analyser to process based
on Triple Patterns Recognition Rules which are predefined by
user. The Triple Patterns Recognition Rules is a set of triple
patterns defining the rule to extract the values from streaming
data. Extracted values will be indexed correspondingly based
on their characteristics and graph patterns. The stream sub-
graphs that have spatial context will be routed to ElasticSearch
to index and the ones have time series of numeric values will be
router to OpenTSDB cluster. The details of these two indexing
mechanisms are presented in below. Otherwise, the stream sub-
graphs will be stored in the normal triple storage,i,e, JenaTDB.
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Figure 6: Data Routing Flow

3.2.1. Spatial-driven Indexing

To enable spatial computation on spatial properties attached
to a subgraph, we store and index such subgraphs as a docu-
ment in ElasticSearch storage as illustrated in Figure[7} Along
with spatial attributes, ElasticSearch allows us to add date-time,
string attributes to be indexed on which we can filter by the
range condition. That means that a combination of spatial com-
putation, free text search and temporal filter are supported in
our SPARQL endpoint (see example queries in Section[d.T).

To build a document to insert to the ElasticSearch storage,
the Spatial and Text Entity Indexer will extract RDF triples
which comprises geographical information text label, and date-
time value (Figure [6). Triples which is filtered by these rules
then will be constructed to ElasticSearch record and to store
into ElasticSearch storage. Both bulk and near real time (NRT)
updates are possible with ElasticSearch. Bulk updates are ac-
complished using Hadoop Map/Reduce and NRT are performed
through direct HTTP calls.

3.2.2. Temporal-driven indexing

A large amount sensor stream data of the GoT is fed as time
series of numeric values such as temperature, humidity, wind
speed. Therefore, we choose OpenTSDB (Open Time Series
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Figure 7: Store spatial subgraphs as ElasticSearch document

Database) which use HBase as underlines scalable database.
OpenTSDB can ingest millions of time series data points per
second. As shown in Figure [6] input triples which comprises
numeric values and timestamps are analysed based on prede-
fined temporal recognition rules in Triple Analyzer. The Entity
Indexer extracts numeric measurements to construct time se-
ries rows to insert to HBase via parallel Time Series Daemons
(TSD) running on different machines of our cluster.

Along with values and timestamps, some metadata can be
added to each datapoint of OpenTSDB. Such metadata can be
used to filter the values by the information encoded in the meta-
data. Therefore, we extract spatial context and sensing context
of the numeric sensor readings as a temporal subgraph. This
graph is used to construct necessary metadata to add to the data
points that will be then inserted to OpenTSDB. The metadata
is chosen by the frequency used as filtering parameters in the
SPARQL queries. For example, the coordinate where the sensor
measurement are captured will be used to covert to a geohash
value. This geohash value is the used to encode as a filtering
tag. Other properties such as type of sensor, type of reading are
also encoded as filtering tags.

4. Demonstrations and Lessons Learnt

4.1. Demonstrations

Considering GoT as an open linked dataset, we
make GoT accessible via SPARQL endpoint at
http://graphofthings.org/sparql/. However, this SPARQL
endpoint supports more powerful SPARQL query language
than SPARQL 1.1. For spatial computation, it supports spatial

extension for SPARQL query via Jena Spatial built-in function



which are mapped to spatial computation functions provided
by ElasticSearch. For query graph pattern associated with time
series data, we also support temporal extension for SPARQL
which is backed by our modified version of Open TSDB. On
top of that, full text search is supported by fuzzy matching
syntaxes of Lucence which is processed by ElasticSearch.

To support continuous queries over stream data of GoT, a
Stream Subscribing Channel is given via web socket protocol
at ws://graphofthings.org/cqels/. Via this channel, any client
can pose continuous queries using CQELS query language over
stream data to get stream notification of interest. For example,
a browser can use simple java script code to send a CQELS
query (in text string) to get location updates of all air planes
of an airline within a spatial boundary, e.g. European airspace.
This channel is especially useful for realtime web/mobile appli-
cation that use Model-Controller-View (MVC) front-end pro-
gramming frameworks and Angular]JS, Backbone.js as the up-
dates from streams of GoT can automatically trigger the rele-
vant visualisation widgets of without having to interfere other
parts of the applications. Until May, 2015, the online system
at http://graphofthings/ serves 8.5 billion data entries stored in
ElasticSearch and OpenTDB clusters. Among them, transporta-
tion data like ship, flight, bus train accounts for 370 million en-
tries over 10 months. As we loaded the NOAA for nearly 40
years, there are nearly 8 billion of meteorological data entries.
This data is approximately equivalent to 140 billon triples. The
system is still continuously consuming millions of new data en-
tries and we are adding more data sources per month. The un-
derlying setup to serve the such data is a cluster of 7 servers run-
ning on share network backbone with 10Gbps bandwidth. Each
server has following configuration: 2x E5-2609 V2 Intel Quad-
Core Xeon 2.5GHz 10MB Cache, Hard Drive 3x 2TB Enter-
prise Class SAS2 6Gb/s 7200RPM - 3.5” on RAID 0, Memory
32GB 1600MHz DDR3 ECC Reg w/Parity DIMM Dual Rank.
One server is dedicated as front-end server and coordinating the
cluster, other 6 servers are used to stored data as and run as pro-
cessing slaves. Our current deployment uses Zookeeper 3.4.5-
cdh4.2, Storm 0.9.2, ElasticSearch 1.5.2, OpenTSDB 2.0 and
HBase 0.98.4. A cluster includes 1 master node which has Nim-
bus, Zookeeper and ElasticSearch and HBase master installed.
The other 6 nodes are within the same administrative domain
play as ElasticSearch and HBase slaves. All heavy processing
pipelines are parallelized using CQELS Cloud parallel execu-
tion framework [22]]. This framework is used to build highly
parallel execution pipelines of SPARQL Engine and CQELS
Engine. The execution of such pipelines is scheduled and co-
ordinated by Storm and HBase ’s co-ordination services, thus,
the elasticity of our system is powered by Storm, ElasticSearch
and HBase.

Powered this setup, we demonstrate the capability of manag-
ing big volume of data as well high updating throughput by
walking through the process of building the live explorer of
GoT using HTML and Javascript athttp://graphofthings.
org/. The GoT Explorer starts with a Live View that sum-
marises “what’s been happening in the world” as illustrated in
Figure 8] The HTML page will call SPARQL queries corre-
sponding to the map area and the time range of interest to fetch

back ground information, i.e, locations and types and updating
summaries of stream data sources that have readings in 60 min-
utes, to render information on the map.

For instance, [a] is the heat map of aggregated from temper-
ate readings in last 1 hour in corresponding map areas. The
query can be easily expressed by following query.

Query 1. Heat map query

PREFIX temporal: <http://jena.apache.org/temporal#>
SELECT =
{ ?v temporal:avg (’lh-ago’ ’u0q’ ’temperature’).

}

To retrieve a list of indicated sensor, a query to get a list
on a certain type of sensors, e,g. temperature sensor within a
bounding box can be expressed as following.

Query 2. Spatial query for sensor discovery

PREFIX spatial: <http://jena.apache.org/spatial#>
PREFIX geo: <http://www.w3.0rg/2003/01/geo/wgs84_pos#>
PREFIX dul: <http://www.loa-cnr.it/ontologies/DUL.owl#>
PREFIX was: <http://purl.oclc.org/NET/ssnx/meteo/aws#>
SELECT =
{?loc spatial:withinBox (dul:PhysicalPlace

67.033 -178.917 67.24 -177.67).
?loc geo:lat ?7lat.
?loc geo:long 7long.
?sensor dul:hasLocation 7loc.
7?sensor a aws:TemperatureSensor;

To have a quick comparison on historical data of a selected
set of stream data sources, e.g, sensor measurements, the GoT
explorer provides a 3D layout of live thumbnails as shown in
part [b] of Figure A live thumbnail is a latest snapshot
of the stream data sources that are fetched via SPARQL End-
point. The 3D layout can display much more information than
the usual 2D one. For example, the sphere layout in the Fig-
ure 8] can render 64 thumbnail charts or even more. This is very
useful when exploring and correlating millions of stream data
sources. The data to feed into such charts can be retrieved from
the SPARQL query similar to the query below. This query re-
trieve historical data from 64 temperature sensors within 200
miles from the coordinate where the mouse clicked (67.033 -
178.917).

Query 3. Query using spatial and temporal search patterns

PREFIX spatial:<http://jena.apache.org/spatial#>

PREFIX temporal:<http://jena.apache.org/temporal#>

PREFIX dul:<http://www.loa-cnr.it/ontologies/DUL.owl#>
PREFIX ssn:<http://purl.oclc.org/NET/ssnx/ssn#>

PREFIX cf:<http://purl.oclc.org/NET/ssnx/cf/cf-property#>

SELECT ?sensor 7?obs ?value 7time

{

7loc spatial:withinCircle (dul:PhysicalPlace
67.033 -178.917 20.0 ’miles’ 200).

?sensor dul:hasLocation ?7loc.

?sensor ssn:observes cf:air_temperature.

?obs ssn:observedBy ?sensor.

7obs ssn:observationResult 7output.

7obs ssn:observationResultTime ?time.

?output ssn:hasValue ?value.

?value temporal:values (’2015/01/01-03:00°

’2015/01/05-09:00") .
}limit 64

When the user is interested in a detailed data of a snapshot,
he/she can click the snapshot to see all relevant historical data
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Figure 8: Live View and Visualization of Graph of Things - [a] Heat map, [b,c] 3D layout and chart of historical data, [d] live thumbnails of traffic cameras

stored in GoT. Then corresponding charts of such data are gen-
erated by fetching data from GoT SPARQL endpoint using tem-
poral query patterns. For instance, part [c] of the Figure [§]
presents the charts of historical weather data from a snapshot
of figure [b]. Moreover, the historical data can be used to play
back “what happened in the past”, e.g. part [d] is playback pop-
up of a camera sensor. A play back data can be retrieved to
using a time range. Following example query retrieves ship lo-
cations from "2015/04/11-03:00" to *2015/04/11-09:00’ to play
back their movements within an area in the map.

Query 4. Spatial query for ship discovery with time constraint

PREFIX spatial: <http://jena.apache.org/spatial#>
PREFIX got: <http://graphofthings.org/ontology/ns/>

SELECT 7?vessel

{?vessel spatial:withinCircle (got:Vessel
’2015/04/11-03:00° ’2015/04/11-09:00°
54.372 -10.1486 20 ’miles’ 100).

}limit 100

To keep the HTML page updated with the data streamed from
relevant stream data sources, a Javascript agent of the HTML
page registers respective CQELS queries to update the sum-
mary of live information in the Live Update Dash board over-
layered on the bottom of the map.

4.2. Lessons Learnt

To test the running time performance of the system, we have
recorded average query execution time of 4 example queries in
Section [A.1] each month since June 2014. Results reported in
Figure 0] show that execution time of queries Q1-Q3 slightly
increase but take less than 0.5s to response on 8.5 billion data
entries or 140 billion triples so far. However, the execution time
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Figure 9: Average query execution time by time collected

of query Q4 has sharply increased from 0.5 seconds to 2.5 sec-
onds. It shows that the more moving objects are added, the
considerably heavier work load is pushed to ElasticSearch clus-
ter. However, when the number of time series data are added,
the performance of queries with temporal filters are effectively
handled by the OpenTSDB cluster.

For the showing the scalability aspect of the system, we have
also recorded the maximum indexing throughputs of different
types of data, i.e, temporal, spatial and full-text data at certain
sizes of data in the storages. The results of Figure [I0] show
that the indexing throughputs of spatial and full-text decrease
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Figure 10: Indexing throughputs

slightly the ElasticSearch cluster. However, indexing through-
puts of time series are quite stable when the data grows even
with billions of data entries vs. millions of documents on Elas-
ticSearch. So far, the update throughputs have not hit the limits
of system’s indexing throughput yet, however, in the long run,
more hardware will be needed to added to copy with more in-
gesting loads and more data archived to the system.

5. Related Work

There is a trend of employing semantic web technologies
to solve problems of interoperability problems when integrat-
ing heterogeneous and distributed IoT systems. In particular,
the Linked Data principles are applied to provide semantic de-
scription to the data, sensors and things and also link them to
other data sources. Towards this trend, a number of modelling
approaches and ontologies used to annotate and describe the
IoT data have been developed, such as [31], [[13]. OntoSen-
sor [3] constructs an ontology-based descriptive specification
model for sensors by excerpting parts of SensorML descrip-
tions and extending the IEEE Suggested Upper Merged Ontol-
ogy (SUMO) [7]. The work presented in [5] proposes a SSN
ontology to describe sensors and sensor networks. The ontol-
ogy represents a high-level schema model to describe sensor
devices, their capabilities, platform and other related attributes
in the semantic sensor networks and the sensor Web applica-
tions. Another example is the SensorData Ontology developed
in [3]], which is built based on Observations & Measurements
and SensorML specifications defined by the OGC Sensor Web
Enablement (SWE) [4].

From ontology-based modelling approaches above, Patni et
al. [28] have developed an RDF datase containing expres-
sive descriptions of 20,000 US weather stations. The dataset
contains over 1.7 billion RDF triples and was the first dataset
for publishing sensor data as Linked Data. In [[12], the authors
describes a SenseWeb platform which provides graphical user
interfaces to annotate the IoT data using concepts obtained from
linked open data cloud (e.g. DBPedia and GeoNames) and also
other local domain ontologies. The annotated data is published

1 7hllp://wiki.knoesis.org/index.php/LinkedSensorDala

as RDF triples and is available via a common SPARQL end-
point.

While there are plenty of proposals of publishing sensors
data using RDF but they are quite a few of them systemati-
cally addressing the issues of expressiveness, performance and
scalability of RDF stores used in such systems. There are sev-
eral complimentary work on support spatial-temporal queries
on RDF stores. For example, to enable spatiotemporal analy-
sis, in [29]], Perry et al. propose SPARQL-ST query language
and introduce the formal syntax and semantics of their pro-
posed language. SPARQL-ST is the extended from SPARQL
language to support complex spatial and temporal queries on
temporal RDF graphs containing spatial objects. With the same
goal of SPARQL-ST, Koubarakis et al. propose st-SPARQL
[14]. They introduce stRDF as a data model to model spa-
tial and temporal information and stSPARQL to query against
stRDF. These query languages in [29} [14] could process a lim-
ited amount of static RDF data, but none of them address the
challenge of high update throughput of the IoT data. Moreover,
scalability and elasticity for hosting such a massive amount of
dynamic data are still challenging issues for the Semantic Web
community so far. Our work presented in this article is a new
evolution of our series of efforts [[18l 21} [19] on managing [oT
data together with other related work in the community. In this
article, we systematically touched most of aspects of employ-
ing Linked Data to enable graph-based search and discovery of
IoT.

6. Conclusions and Future work

The article presents a system aiming to build a Knowledge
Graph for connected things, the Graph of Things (GoT). The
GoT provides a unified graph-based view of data generated by
connected things. GoT provides not only sensing data from
sensors but understandings the world around physical things,
e.g, meaning of sensor readings, sensing context and real world
relationships among things, facts and events. GoT has been
adding millions of records per hour, roughly more than 10 bil-
lion RDF triples per month. GoT puts very first steps towards a
graph-based search engine for Internet of Things.

Gearing towards a realtime search engine, we are implement-
ing some ranking algorithms on the graph structure of GoT to



enable context-based recommendation features. Subsequently,
data quality properties will be added as a metric for such rank-
ing algorithms. Reasoning capability is also a desired feature of
GoT but interestingly challenging future goal to achieve in con-
text of big data requirements. To incorporate public IoT data
sources with private ones, we intend to extend some state of the
art on access control policies for RDF data to GoT.

Acknowledgements

This publication has emanated from research sup-
ported in part by Irish Research Council under Grant
No. GOIPD/2013/104 and by European Union under and Grant
No. FP7-287661 (GAMBAS) and Grant No. FP7-ICT-608662
(VITAL).

[1] Daniel J. Abadi, Adam Marcus, Samuel R. Madden, and Kate Hollen-
bach. Scalable semantic web data management using vertical partition-
ing. In Proceedings of the 33rd VLDB, VLDB *07, pages 411-422. VLDB
Endowment, 2007.

Raian Ali, Carlos Solis, Mazeiar Salehie, Inah Omoronyia, Bashar Nu-
seibeh, and Walid Maalej. Social sensing: When users become monitors.
In Proceedings of the 19th ACM SIGSOFT Symposium, ESEC/FSE 11,
pages 476479, New York, NY, USA, 2011. ACM.

Barnaghi, PM., Meissner, S., Presser, M., Moessner, and K. Sense and
sensability: Semantic data modelling for sensor networks. In Proceedings
of the ICT Mobile Summit 2009, 2009.

Mike Botts, George Percivall, Carl Reed, , and John Davidson. Overview
and high level architecture. In GeoSensor networks, 2008.

Michael Compton, Payam Barnaghi, Luis Bermudez, Ral Garca-Castro,
Oscar Corcho, Simon Cox, John Graybeal, Manfred Hauswirth, Cory
Henson, Arthur Herzog, Vincent Huang, Krzysztof Janowicz, W. David
Kelsey, Danh Le Phuoc, Laurent Lefort, Myriam Leggieri, Holger
Neuhaus, Andriy Nikolov, Kevin Page, Alexandre Passant, Amit Sheth,
and Kerry Taylor. The {SSN} ontology of the {W3C} semantic sensor net-
work incubator group. Web Semantics: Science, Services and Agents on
the World Wide Web, 17(0):25 — 32, 2012.

Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao,
Kevin Murphy, Thomas Strohmann, Shaohua Sun, and Wei Zhang.
Knowledge vault: A web-scale approach to probabilistic knowledge fu-
sion. In Proceedings of the 20th ACM SIGKDD, KDD ’14, pages 601—
610, New York, USA, 2014.

Eid, M., Liscano, R., El Saddik, and A.:. A universal ontology for sensor
networks data. In Proceedings of the IEEE International Conference on
Computational Intelligence for Measurement Systems and Applications,
pages 59-62, 2007.

Jenny Rose Finkel, Trond Grenager, and Christopher Manning. Incorpo-
rating non-local information into information extraction systems by gibbs
sampling. In Proceedings of the 43rd Annual Meeting on Association for
Computational Linguistics, pages 363-370, 2005.

Lukasz Golab and Theodore Johnson. Consistency in a stream warehouse.
In CIDR’11, pages 114-122, 2011.

Johannes Hoffart, Fabian M Suchanek, Klaus Berberich, and Gerhard
Weikum. Yago2: A spatially and temporally enhanced knowledge base
from wikipedia. In Proceedings of the 23rd international joint conference
on Artificial Intelligence. AAAI Press, 2013.

Jiewen Huang, Daniel J. Abadi, and Kun Ren. Scalable sparql querying
of large rdf graphs. In Proceedings of the 33rd international conference
on Very large data bases, VLDB 11, pages 1123-1134, 2011.

A. Kansal, S. Nath, J. Liu, and F. Zhao. Senseweb: An infrastructure for
shared sensing. IEEE MultiMedia, 2007.

Kim, J.-H., Kwon, H., Kim, D.-H, Kwak, H.-y, Lee, and S.-J. Building
a service-oriented ontology for wireless sensor networks. In Proceedings
of the Seventh IEEE/ACIS International Conference on Computer and In-
formation Science, pages 649—-654, 2008.

M. Koubarakis and K. Kyzirakos. Modeling and querying metadata in the
semantic sensor web: the model strdf and the query language stsparql. In
Proc. Extended Semantic Web Conference, volume 12, 2010.

[2]

[3]

[4]
[3]

(6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

10

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Vijay Krishnan and Christopher D Manning. An effective two-stage
model for exploiting non-local dependencies in named entity recognition.
In Proceedings of the 21st International Conference on Computational
Linguistics and the 44th annual meeting of the Association for Computa-
tional Linguistics, pages 1121-1128, 2006.

Danh Le Phuoc. A Native And Adaptive Approach for Linked Stream
Processing. PhD thesis, National University of Ireland, Galway, 2013.
Danh Le-Phuoc, Minh Dao-Tran, Josiane Xavier Parreira, and Manfred
Hauswirth. A native and adaptive approach for unified processing of
linked streams and linked data. In Proceedings of 10th International Se-
mantic Web Conference, pages 370-388, 2011.

Danh Le-Phuoc and Manfred Hauswirth. Linked open data in sensor data
mashups. In Proceedings of the 2nd International Workshop on Semantic
Sensor Networks, SSN09, pages 1-16, 2009.

Danh Le-Phuoc, Hoan Quoc Nguyen-Mau, Josiane Xavier Parreira, and
Manfred Hauswirth. A middleware framework for scalable management
of linked streams. Web Semantics: Science, Services and Agents on the
World Wide Web, 16:42-51, 2012.

Danh Le-Phuoc, Hoan Quoc Nguyen-Mau, Josiane Xavier Parreira, and
Manfred Hauswirth. A middleware framework for scalable management
of linked streams. Web Semantics: Science, Services and Agents on the
World Wide Web, 0(0), 2012.

Danh Le-Phuoc, Josiane Xavier Parreira, Michael Hausenblas, Yuanbo
Han, and Manfred Hauswirth. Live linked open sensor database. In
Proceedings of the 6th International Conference on Semantic Systems,
I-SEMANTICS ’ 10, pages 46:1-46:4, New York, NY, USA, 2010. ACM.
Danh Le-Phuoc, Hoan Nguyen Mau Quoc, Chan Le Van, and Manfred
Hauswirth. Elastic and scalable processing of linked stream data in the
cloud. In The Semantic Web—ISWC 2013, pages 280-297. Springer, 2013.
Danh Le-Phuoc, Josiane Xavier Parreira, and Manfred Hauswirth. Linked
stream data processing. In Thomas Eiter and Thomas Krennwallner, edi-
tors, Reasoning Web. Semantic Technologies for Advanced Query Answer-
ing, volume 7487 of Lecture Notes in Computer Science, pages 245-289.
Springer Berlin Heidelberg, 2012.

Kisung Lee and Ling Liu. Scaling queries over big rdf graphs with se-
mantic hash partitioning. In Proceedings of the Very Large Database
Endowment, VLDB ’07. VLDB Endowment, 2014.

Anmol Madan, Manuel Cebrian, David Lazer, and Alex Pentland. Social
sensing for epidemiological behavior change. In Proceedings of the 12th
ACM International Conference on Ubiquitous Computing, UbiComp *10,
pages 291-300, New York, NY, USA, 2010. ACM.

Nathan Marz and James Warren. Big Data: Principles and Best Practices
of Scalable Realtime Data Systems. Manning Publications Co., Green-
wich, CT, USA, Ist edition, 2015.

Meenakshi Nagarajan, Karthik Gomadam, Amit P. Sheth, Ajith Ran-
abahu, Raghava Mutharaju, and Ashutosh Jadhav. Spatio-temporal-
thematic analysis of citizen sensor data: Challenges and experiences. In
WISE’09, WISE 09, pages 539-553, 2009.

H. Patni, C. Henson, and A. Sheth. Linked sensor data. In Collabora-
tive Technologies and Systems (CTS), 2010 International Symposium on,
pages 362-370, May 2010.

M. Perry, P. Jain, and A. P. Sheth. Sparql-st: extending sparql to support
spatiotemporal queries. Journal of Geospatial Semantics and the Seman-
tic Web, 12:25-32, 2011.

Lev Ratinov and Dan Roth. Design challenges and misconceptions in
named entity recognition. In Proceedings of the Thirteenth Conference on
Computational Natural Language Learning, pages 147—155. Association
for Computational Linguistics, 2009.

Russomanno, D.J, Suchanek, Kothari, C., and Klaus Thomas. Sensor
ontologies: from shallow to deep models. In Proceedings of the Thirty-
Seventh southeastern Symposium on System Theory, 2005.

Amit Sheth. Citizen sensing, social signals, and enriching human experi-
ence. IEEE Internet Computing, 13(4):87-92, July 20009.



	Introduction
	Building The Live Knowledge Graph of Connected Things
	Collecting facts of Physical Things
	Expand the knowledge graph to Social Things

	System Design
	Architecture
	Query-aware Hybrid Storage
	Spatial-driven Indexing
	Temporal-driven indexing


	Demonstrations and Lessons Learnt 
	Demonstrations
	Lessons Learnt

	Related Work
	Conclusions and Future work

